Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone.
نویسندگان
چکیده
The present work focuses on the physicochemical characterization of selected mineral-based biomaterials that are frequently used in dental applications. The selected materials are commercially available as granules from different biological origins: bovine, porcine, and coralline. Natural and calcined human bone were used for comparison purposes. Besides a classical rationalization of chemical composition and crystallinity, a major emphasis was placed on the measurement of various morphostructural properties such as particle size, porosity, density, and specific surface area. Such properties are crucial to acquiring a full interpretation of the in vivo performance. The studied samples exhibited distinct particle sizes (between 200 and 1000 microm) and shapes. Mercury intrusion revealed not only that the total sample porosity varied considerably (33% for OsteoBiol, 50% for PepGen P-15, and 60% for BioOss) but also that a significant percentage of that porosity corresponded to submicron pores. Biocoral was not analyzed by this technique as it possesses larger pores than those of the porosimeter upper limit. The density values determined for the calcined samples were close to the theoretical values of hydroxyapatite. However, the values for the collagenated samples were lower, in accordance with their lower mineral content. The specific surface areas ranged from less than 1 m(2)/g (Biocoral) up to 60 m(2)/g (BioOss). The chemical and phase composition of most of the samples, the exception being Biocoral (aragonite), were hydroxyapatite based. Nonetheless, the samples exhibited different organic material content as a consequence of the distinct heat treatments that each had received.
منابع مشابه
Physicochemical Characteristics of Bone Substitutes Used in Oral Surgery in Comparison to Autogenous Bone
Bone substitutes used in oral surgery include allografts, xenografts, and synthetic materials that are frequently used to compensate bone loss or to reinforce repaired bone, but little is currently known about their physicochemical characteristics. The aim of this study was to evaluate a number of physical and chemical properties in a variety of granulated mineral-based biomaterials used in den...
متن کاملBiphasic calcium phosphates (BCP) of hydroxyapatite (HA) and tricalcium phosphate (TCP) as bone substitutes: Importance of physicochemical characterizations in biomaterials studies
The data presented in this article are related to the research article entitled "Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research" [1]. This article provides in depth study of BCP bone substitutes as valuable option in the field of tissue engineering. However, there are discrepanci...
متن کاملPhysicochemical Characterization of nano-clinoptilolite/-TCP /gelatin Scaffold and its Application in Periodontics
Background and aim: Due to the composite structure of the jaw bone, gelatin and beta-calcium phosphate (b-TCP) biomaterials have been used repeatedly in bone tissue engineering. Despite the desirable properties of scaffolds made, their application has been limited due to their poor mechanical properties and high degradability. The aim of this study was to investigate the effect of clinoptilolit...
متن کاملComparison of biomaterial implants in the dental socket: histological analysis in dogs.
BACKGROUND Bone graft procedures have been used commonly in buco-maxillo-facial surgery. For this reason, many researchers have evaluated the bone substitutes. PURPOSE The present study evaluated soft and hard tissue reactions to two different hydroxyapatites HAs (synthetic HA and natural HA) and bioactive glass implanted into the sockets immediately after extraction. MATERIALS AND METHODS ...
متن کاملDivergent Resorbability and Effects on Osteoclast Formation of Commonly Used Bone Substitutes in a Human In Vitro-Assay
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2010